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I ASCMO is an interdisciplinary journal that publishes
cutting-edge scientific advances and statistical methods.

I ASCMO serves at the interface between statistics and the
atmospheric and oceanic sciences.

I Journal Website: ascmo.net

http://ascmo.net/


Modern statistics is a
multidisciplinary discipline.
It works across boundaries.

P. Guttorp and G. Lindgren, 2016



Ecology of infectious diseases

Ecological models can be
deterministic or stochastic
Bolker, Ecological Models and Data in R, 2008

Classification of modeling approaches
Deterministic Stochastic
Mathematical Statistical
Mechanistic Phenomenological
Process Pattern



Models for infectious diseases
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Susceptible-Infected-Recovered (SIR) model for disease
transmission where the state variables are described by a set
of differential equations.



Challenges in the ecology of infectious diseases

I Data can be messy and sparse
I You have to find the animals who are sick, they don’t visit

the nearest health clinic
I You need knowledge of mathematical biology
I You need to able to synthesize a broad range of statistical

methods

Sounds like fun!



Deer (female) with 

Chronic Wasting Disease

Healthy deer (male)

Chronic Wasting Disease



April 2016: The first detection of CWD in Europe



CWD Transmission

I Deer were held at the Colorado Division of Wildlife in Fort
Collins, Colorado

I Annual observations of cumulative mortality from two CWD
epidemics in captive mule deer

I Epidemic 1: 1974 to 1985
Epidemic 2: 1992 to 2001 (in a new deer herd)

I 21 observations over time
I The dataset also includes the annual number of new deer

added to the herd and the per capita losses due to natural
deaths and removals



CWD Transmission

We develop a type of Susceptible-Infected-Recovered (SIR)
model for disease transmission where the state variables are
described by a set of differential equations.

Consider the state vector X(t) = (S(t), I(t),C(t))T , where
I S is the number of susceptible animals,
I I is the number of infected animals,
I C is the cumulative number of deaths from CWD over time.

Only C is observed and the other two state variables, S and I,
are unobserved.



Direct transmission ODE model for CWD

dS = [a− S(βI + m)] dt
dI = [βSI − I(µ+ m)] dt

dC =µI dt

where
I β is the transmission coefficient
I µ is the per capita CWD mortality rate

}
unknown

I a is the number of susceptible animals annually
added to the population via births or importation

 known

I m is the per capita natural mortality rate
We assume X(0) = (S(0), I(0),C(0))T are (un)known initial
conditions.



Ordinary Differential Equation Model for CWD
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Deterministic dynamical models can be used to determine
whether or not transmission will occur.



Stochastic Differential Equation Model for CWD
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Stochastic dynamical models
I Can be used to determine the probability of disease

transmission between two individuals
I Allow more realistic description of the transmission of

disease.



Direct transmission SDE Model for CWD

A SDE model for direct transmission of CWD is given by

dS =[a− S(βI + m)]dt + B11dW1 + B12dW2 + B13dW3,

dI =[βSI − I(µ+ m)]dt + B21dW1 + B22dW2 + B23dW3,

dC =µIdt + B31dW1 + B32dW2 + B33dW3,

where
I initial condition X(0) = (S(0), I(0),C(0))T assumed known
I W is a k -dimensional standard Wiener process.
I B = (Bij) =

√
Σ with

Σ =

a + S(βI + m) −βSI 0
−βSI βSI + I(µ+ m) −µI

0 −µI µI

 .



Methods

Some methods for statistical inference for dynamical disease
models

I Method 1: MLE for SDEs
I Method 2: Model selection for dynamical models
I Method 3: POMP models
I Method 4: Approximate an ODE via smoothing
I More methods: see talks by J. Xu, V. Minin



Method 1: Parameter estimation for SDEs

Goal: Statistical inference for SDE model parameters

Challenges:
I Multivariate state space
I Data are partially observed, discrete, sparse.
I The transition density between two

observations is typically unknown.
I Likelihood functions involving SDEs are

computationally expensive



Method 1: Parameter estimation for SDEs

Sun, Lee, Hoeting 2015 CSDA
I Automatic tuning of importance sampler via an auxiliary

parameter
I Parameter estimation via

penalized simulated maximum likelihood
where we simultaneously

I estimate dynamical model parameters θ and
I optimize the importance sampler using parameter ρ to

minimize the variation of the Monte Carlo approximation of
the transition density.



Method 1: Penalized simulated maximum
likelihood (PSML)

The PSML estimator (θ̂, ρ̂) is defined by

(θ̂, ρ̂) =arg max
n∑

i=1

log

1
J

J∑
j=1

hρ

 subject to
n∑

i=1

ĉv (hρ) ≤ s,

where
I s ≥ 0 is a tuning parameter
I hρ is the importance sampling ratio where ρ is an auxiliary

parameter used to tune the importance sampling function.
I ĉv(hρ) is the sample coefficient of variation of hρ



Method 2: Model selection for dynamical models

Hierarchical models
Stage 1: Observation model
Stage 2: Process model (dynamical model)
Stage 3: Parameter model

Goal: Choose between 3 dynamical models used at stage 2
1. Ordinary differential equation (ODE) model
2. Stochastic differential equation (SDE) model
3. Continuous time Markov chain (CTMC) model

Libo, Sun, Hoeting (Envirometrics 2015) use an
Approximate Bayesian Computation method (ABC-SMC)



Method 2: Computational methods

Approximate Bayesian Computation (ABC):

I Method to estimate the model parameters when the
likelihood is difficult to compute

I Basic idea: Simulate data from the model and compute a
distance function between simulated data and the
observed data

ABC-SMC (sequential Monte Carlo):
Improve ABC by simulating data through a sequence of
intermediate distributions

Model selection:
Compare models using Bayes factors (Kass & Raftery 1995)



Method 3: POMP models

Ionides and co-authors (2006, 2015 . . . ) have developed
methodology to enable

I maximum likelihood inference on
I partially observed Markov process (POMP) models



Method 4: Approximate an ODE via smoothing

Ramsay et al. 2007, Cao et al. 2007

General idea:

y(tj) ∼N(X (tj), σ2), j = 1, . . . ,n
dX
dt

=f (X |θ)

Two levels of nested optimization:
1. Approximate X with a non-parametric, smooth function

conditional on θ
2. Minimize a sum of squared errors between the observed

data and the smoothed curve



What’s next

I Theory: Theoretical properties of the methods

I Methodology:
I Need methods that can be used for more complex disease

models
I Faster, accurate computation
I More precise variance estimation

I Application:
I Which method to use when
I Need comprehensive and easy to use software
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